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Abstract

Facial expressions provide an important behavioral measure for the study of emotion, cognitive processes, and social
interaction. The Facial Action Coding SystdiiBkman & Friesen, 1978s an objective method for quantifying facial
movement in terms of component actions. We applied computer image analysis to the problem of automatically
detecting facial actions in sequences of images. Three approaches were compared: holistic spatial analysis, explicit
measurement of features such as wrinkles, and estimation of motion flow fields. The three methods were combined in
a hybrid system that classified six upper facial actions with 91% accuracy. The hybrid system outperformed human
nonexperts on this task and performed as well as highly trained experts. An automated system would make facial
expression measurement more widely accessible as a research tool in behavioral science and investigations of the neural
substrates of emotion.

Descriptors: Facial expression, Facial Action Coding SystéfA\CS), Emotion, Computer image analysis

Facial expression measurement from video provides an indicatdvleasurement of Facial Signals
of emotion activity that is less intrusive than electroencephalograThe facial action coding syste(FACS) (Ekman & Friesen, 1978
phy (EEG), electromyography, autonomic nervous system meawas developed to directly measure facial behaviBrevious ap-
surements and brain imaging. It is presently used in a variety oproaches to the study of facial expression measured information
areas of behavioral research, including the study of emotion, sociahat observersnfer from facial expressions. The difference be-
interaction, communication, anthropology, personality, and childtween expression measurement and observer inference was re-
developmentfor reviews, see Ekman, Huang, Sejnowski, & Hager, viewed by Ekmar{1982a, 1982 FACS was developed to address
1992; Ekman & Oster, 1979; Ekman & Rosenberg, 19®ecent  questions such as the differences in facial movement when people
advances in computer vision and pattern recognition open up thare telling the truth versus lying, the patterns of central nervous
possibility of automatic measurement of facial signals. An auto-system activity that accompany different facial movements, and
mated system would make facial expression measurement morghether facial behavior predicts clinical improvement.
widely accessible as a research tool in behavioral science and FACS allows precise specification of the morphology and the
medicine and would provide alternative measures of visual stimuldynamics of facial movement. FACS was developed by determin-
and behavioral responses in psychophysiological investigations intimg from palpation, knowledge of anatomy, videotapes, and photo-
the neural substrates of emotion and facial expressions. graphs how the contraction of each of the facial muscles changed
the appearance of the face. Ekman and Fri¢$6i8 defined 46
action unitgAUs) to correspond to each independent motion of the
This research was supported by NSF grant BS-9120868 Lawrencface' FACS is coded from video, and. a tr.amed human .F.ACS coder
Livermore National Laboratories Intra-University Agreement 829’1436, andaecompOses an_obser\{ed expres_5|0n into the SPec'f'c AUs that
the Howard Hughes Medical Institute. occurred and their duration, onset time, and offset time. More than
We are indebted to FACS experts Harriet Oster, Linda Camras, Wil300 people worldwide have achieved intercoder agreement on FACS.
Irwin, and Erika Rosenberg for their time and assistance. We thank GianA number of studies have appeared showing the rich variety of

luca Donato, Jan Larsen, and Paul Viola for contributions to algorithm; ; ; ; Cc®
development, Wil Irwin and Beatrice Golomb for contributions to project information that can be obFalned by using FAG®e Ekman &
Rosenberg, 1997, for a review

initiation, and Claudia Hilburn Methvin for image collection. We thank
Gary Cottrell and two anonymous reviewers for valuable comments on
earlier drafts of this paper.
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marni@salk.edu. obtrusive and not comprehensive.
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Although FACS is a promising approach, a major impedimentsufficient for describing the full range of facial behavior, and the
to its widespread use is the time required both to train humanelationship between these measures and internal state has not been
experts and to manually score the video tape. It takes over 100 testablished. A large body of empirical data already exists demon-
of training to achieve minimal competency on FACS, and eachstrating the relationship of facial action codes to emotions, emotion
minute of video tape takes approximately 1 hr to score. Automatintensity, variations, blends, and conversational signals.
ing FACS would make it more widely accessible as a research tool,
and it would provide a good foundation for applications of auto-  Analysis of facial motionThe majority of the computer vision
matic facial expression analysis in industry. An automated systemwork on facial expression recognition has focused on facial motion
would not only increase the speed of coding, it would also improveanalysis through optic flow estimation. If the tissues and muscles
the reliability, precision, and temporal resolution of facial mea-are similar between different people, the motions that result from

surement. facial action should be similar, independent of surface level dif-
ferences between faces. In an early exploration of facial expression
Analysis of Facial Signals by Computer recognition, Mas€1991) used optic flow to estimate the activity in
Some success has been achieved for automatic detection of facib# Of the 44 facial muscles. For each muscle he defined a window
actions by tracking the positions of dots attached to the(elgmer, ~ In the face image and an axis along which each muscle expands

Schneider, Kost, Heimann, 1991; Kaiser & Wehrle, 1092sys- and contracts. The mean similarity of the flow vectors inside the
tem that detects facial actions from image sequences without ré¥indow to this axis provided a coarse estimate of the activity of
quiring application of dots to the face would have much broaderthe muscle. Yacoob and Davi$994 constructed a midlevel rep-
utility. Efforts have recently turned to measuring facial actions byresentation of facial motion from the optic flow output, which
image processing of video sequen¢Bartlett et al., 1996; Cohn, consisted of such descriptions aght mouth corner raisesThe
Zlochower, Lien, Wu, & Kanade, in press; Lien, 1998lere, we midlevel representation was then classified into one of six facial

explore and compare methods for classifying facial actions in im-eXpressions using a set of heuristic rules. Rosenblum 1386
age sequence of faces. expanded this work to analyze facial expressions using the full
Recent advances have been made in computer vision for autéemporal profile of the expression, from initiation to apex and then
matic recognition of facial expressions in images. The approache®® relaxation. They trained radial basis function neural networks to
that have been explored include analysis of facial mot®ssa & estimate the stage of an expression from a facial motion descrip-
Pentland, 1997; Mase, 1991: Rosenblum, Yacoob, & Davis, 1996tion, and constructed separate networks for each expression. Ra-
Yacoob & Davis, 1994 measurements of the shapes of facial dial basis functions approximate nonlinear mappings by Gaussian
features and their spatial arrangeme(isnitis, Taylor, & Cootes, |n_terpolat|on of ex_a}mples and are well suited to modeling systems
1997, holistic spatial pattern analysis using techniques based oW/ith smooth transitions between states. Beymer, Shashua, and Pog-
principal components analysi®CA) (Cottrell & Metcalfe, 1991; 910 (1993 trained radial basis function neural networks to learn
Lanitis et al., 1997; Padgett & Cottrell, 1997and methods for the transformation from optic flow fields to pose and expression
relating face images to physical models of the facial skin andcoordinates and from pose and expression coordinates back to
musculaturéEssa & Pentland, 1997; Li, Roivainen, & Forcheimer, optic flow fields. The estimated optic flow fields could be used to
1993; Mase, 1991; Terzopoulos & Waters, 199Bhese systems ;ynthesize new poses or expressions from an example image by
demonstrate approaches to face image analysis that are applica#flé2ge warping techniques. The work most closely related to the
to the present goals, but the systems themselves are of limited ug@Proach we have taken here is that of Cohn efimpress, who

for behavioral and psychophysiological research. are building a system to classify facial actions by facial feature
point tracking. Over 40 points were manually located in the initial
Facial action codes versus emotion categori®ost of the fac_e image, and_ the disp_lace_zm_ents of thgse featur_g points were
computer vision systems for recognizing facial expressions at—esumated by optic flow. [.)|scr|m|nant.funct|ons ClaS.S'f'ed the (.jls'
tempt to classify expressions into a few broad categories of emoplacemgnts into th_ree_actlon classes |n_the brow region, three in the
tion, such as happy, sad, or surprised. The evidence for seven’ © region. and nine in the mouth region.
universal facial expressiorisee Ekman, 1989, for a revi¢\does

) - . gy ) Model-based techniqueSeveral facial expression recognition
not impy that these emotion categories are sufficient to describe all L ;
facial expressiongHager & Ekman, 1995 If automated facial systems have employed explicit physical models of the (assa
' ﬁ/Pentland, 1997; Li et al., 1993; Mase, 1991; Terzopoulos &

measurement were to be constructed simply in terms of seve .
: ) . Ply Ir . aters, 1998 Essa and Pentland 997 extended a detailed an-
elementary emotional categories, much important information woul . .

) . - - . atomical and physical model of the face developed by Terzopoulos
be lost: blends of two emotions, variations within an emotlonaland Waterg1993 and applied it to both recognizing and synthe
category(e.g., vengeance vs. resentmerariations in intensity . ; d app >C0g 9 Y|
(e.g., annoyance vs. furyconversational signals, and idiosyn- sizing facial expressions. The model consisted of a geometric mesh

o Y - IUky ' y with 44 facial muscles, their points of attachment to the skin, and

cratic facial movements. the elastic properties of the skin. Images of faces were mapped
Systems that only produced emotion category labels also couI(J] prop : 9 pp

not be used in investigations of facial behavior itself. SeveralOnto the physical model by image warping based on the locations

. - . . Pf six points on the face. Motion estimates from optic flow were
computer vision systems explicitly parameterize facial movemenrefined by the physical model in a recursive estimation-and-control
(Yacoob & Davis, 199%and relate facial movements to the un- y phy

deryin acial misclatnss & penland 1997 e, 1951 [TSNONK 200 1 ssmat foees we Lsed (o cass e
but these descriptions are not readily interpretable in terms o P ' y '

faci ; ; -~ racy is limited by the validity of the model. There are numerous
acial action codes. It is unknown whether these descriptions ar?actors that influence the motion of the skin following muscle

contraction, and it would be difficult to accurately account for all
2A brief report of this work was published by Bartlett et &1996. of them in a deterministic model. Here, we take a neural network
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Figure 1. Example action sequence from the database. The example shows a subject performing AU 1 starting from a neutral
expression and ending with a high-magnitude action.

approach to image analysis in which facial action classes are learnadethods need not be mutually exclusive. Lanitis et(aB97)
directly from example image sequences of the actions, bypassingcognized identity, gender, and facial expressions by measuring
the physical model. shapes and spatial relationships of a set of facial features using a
flexible face model. Performance improved by augmenting a set of
Feature-based approache®ne of the earliest approaches to feature measurements with parameters containing information about

recognizing facial identity in images was based on a set of featur80des of variation in gray-level images based on PCA.
measurements such as nose length, chin shape, and distance be-
tween the eyeéBrunelli & Poggio, 1993; Kanade, 19Y.7Lanitis Automating FACS
et al.(1997) recognized identity, gender, and facial expressions by
measuring shapes and spatial relationships of a set of facial fedVe explored three different methods for classifying facial actions
tures using a flexible face model. An advantage of the featurelhat were suited to detecting different kinds of image cues: holistic
based approach is that it drastically reduces the number of inpiPatial analysis based on principal components, a feature-based
dimensions. A disadvantage is that the specific image feature@pproach that measures facial wrinkles and eye opening, and facial
relevant to the classification may not be known in advance, andnotion analysis based on template matching of optic flow fields.
vital information may be lost when compressing the image into alhe performances of the three systems were compared and then
limited set of features. Moreover, holistic gray-level information combined into a single system that pools their strengths. One bench-
appears to play an important role on human face proce¢Binge, mark for the performances of the automated systems was provided
1988; Bruce, Hancock, & Burton, 1998 by the ability of naive human subjects to classify the same images.
A second benchmark was provided by the agreement rates of ex-

Holistic analysis.The alternative to feature-based image analy-pert coders on these images.

sis, holistic analysis, emphasizes preserving the original images as

much as possible and allowing the classifier to discover the reIeMethOdS

vant features in the imagédovellan, 1994. An example of this Image databaseWe collected a database of image sequences of

approach is template matching. Templates capture information aboﬁHbjeCtS performing specified facial_ a_ctions. The fuI_I d_atabasg con-

configuration and shape that can be difficult to parameterize. iH2ned over 1,100 sequences containing over 150 distinct actions or
related neural network approaches to image analysis, the physicaftion combinations. The image database was obtained from 24
properties relevant to the classification need not be specified iffaucasian subjects, 12 males and 12 females. Their ages ranged

advance and can be learned from the statistics of the image st,om 19 to 61 yeargmedian= 30 years. Thirteen were experi-

which is particularly useful when the specific features relevant t enF:ed FACS goders, eight had some FACS tra'ining, and threg were
the classification are unknowiValentin, Abdi, O'Toole, & Cot-  Naive. Each image sequence consisted of six frames, beginning

trell, 1994). with a neutral expression and ending with a high-magnitude mus-
One holistic spatial representation is based on the principa?Ie contractlon(Fl.gure ]) The databasg therefore.contalne.d ex-

components of the image pixdlSottrell & Fleming, 1990: Turk & amples of the facial actions at low, medium, and high magnitude.

Pentland, 1991 PCA finds an orthogonal set of dimensions that Trained FACS experts provided demonstrations and instructions to

account for the principal directions of variability in the data set. SUPIECS on how to perform each action. The selection of images

The component axes are template images that can resemble gho‘é‘@s based on stop motion video coded by three experienced FACS

like faces, which have been labeledlons(Cottrell & Flemming coders certified with high intercoder reliability. The criterion for
1990 andeigenface$Turk & Pentland, 199 A low-dimensional acceptance of images was that the requested action and only the
representation of the face images with minimum reconstructior{eques’te‘_j a_ctlon was present. )

error is obtained by projecting the images onto the first few prin-  FOr this investigation, we used data from 20 subjects and at-
cipal component axes. PCA has been applied successfully to re(_E(_emp')ted to class_lfy the six |n(_j|V|duaI upper face actions |IIustrateq
ognizing both facial identityCottrell & Fleming, 1990; Turk & N Figure 2. This set of actions was chosen because the facial
Pentland, 1991and facial expressioriBartlett et al., 1996: Cot- actions in the upper face comprise a relatively independent subset
trell & Metcalfe, 1991; Padgett & Cottrell, 1997Another holistic of facial actions; facial actions in the upper face have little influ-
spatial representation is obtained by a class-specific linear projence on facial motion in the lower face, and vice vefisaman &

tion of the image pixelg§Belhumeur, Hespanha, & Kriegman,

1997). Accurate alignment of the faces is critical to the success of  3The termmagnitudereplaces the terimtensityused in FACS to avoid
such image-based approaches. Feature-based and template-basadusion with image intensity.




256 M.S. Bartlett et al.

AU 1. Inner Brow Raiser

Central frontalis muscle contracts.

Inner corners of brows raise up,

In some subjects, brows make inverted V.
Wrinkles in center of forehead, slight U-shape.

Lateral frontalis muscle contracts.

Pulls lateral portion of the eyebrows upward, producing ™~
Wrinkles on sides of forehead.

Lateral portion of eye cover fold stretches upwards.

AU 4. Brow Lower

Brows lower and / or draw together.

Produces deep vertical and / or 45 degree wrinkles between brows.

Pushes eye cover fold downwards and may narrow eye opening.

May also produce horizontal wrinkles at root of nose and oblique
bulge over medial corner of brow.

AU 5. Upper Lid Raiser

Upper lid retracts, widens eye opening.

Decreases visibility of upper lid.

Increases exposure of sclera above the iris, and on the sides.
Eyeballs appear to protrude.

AU 6. Cheek Raiser

Orbital muscles around the eye contract

May cause crows feet to appear or deepen.

Makes infraorbital furrow evident - straight or crescent shape.
Causes bagging or wrinkling of the skin below the eye.
Changes under eye are lower on face than AU 7

AU 7. Lid Tightener

Tightens eyelids, narrowing the eye opening.

More apparent in lower lid. Lower lid covers more sclera and iris.
Lower lid straightens or medial portion slightly inverts. #~~—
Bulge appears in lower lid and lower eyelid furrow may deepen

Can produce single "crow’s toe," not crows feet as in AU 6.

Figure 2. Examples of the six action@U 1-6) used in this study. Left: Cropped image of the action at highest magnitude. Right:

Difference image obtained by subtracting the neutral im@&game 1 of the sequencé\ction unit description adapted from Ekman
and Friesen(1978.

Friesen, 1978 Most subjects were able to perform only a subsettration is critical for principal components based approaches. The
of the actions without interference from other facial muscles. Eactvariance in assigned eye location using this procedure was 0.4
subject performed a mean of four actions. The dataset therefongixels in the 640-x 480-pixel images.
contained, aside from the neutral frame, a total of 400 images of The eye positions from Frame 1 were used to crop all sub-
facial actiong20 subjects< 4 actionsx 5 frames per actionNine sequent frames and to scale the faces to 45 pixels between the eyes.
subjects performed AU 1, 10 performed AU 2, 18 performed AU 4,The images were rotated in the plane so that the eyes were hori-
all 20 performed AU 5, 5 performed AU 6, and 18 performed zontal, and the luminance brightness values were linearly rescaled
AU 7. to [0, 255. The images were cropped to contain only the upper
Faces were aligned, cropped, and scaled based on the locatiohalf of the face, as shown in Figure 2. The final images contained
of two points in the first frame of each sequence. The two points66 X 96 pixels. Difference images, which were used in the holistic
were indicated by a single mouse click at the center of each eyanalysis, were obtained by subtracting the neutral expression frame
All other procedures were fully automated. Accurate image regis{the first frame in each sequendeom the five subsequent frames.
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Advantages of difference images include robustness to changeke eigenvectors of the pixelwise covariance matrix. The axes were
in illumination, removal of surface variations in facial appear- ordered by the magnitude of the corresponding eigenvalue. Fig-
ance, and emphasis of the dynamic aspects of the image sequenae 3 shows the first 12 principal components of the difference
(Movellan, 1995. images.

Because faces tend to be asymmetric and the contractions of The principal component representation consisted of a set of
facial muscles are also frequently asymmetric, we generated adtoefficients obtained by projecting each difference image onto the
ditional training data by reflecting each image about the verticalcomponent axes. These coefficients comprised the input to a two-
axis. Mirror reversed images of test subjects were never includethyer neural network with 10 hidden units and six output units, one
in the training set, so the classifiers had no access to informatioper action. The network was a feed-forward one, with each unit
about reflected test images either during parameter estimation @onnected to all of the units in the layer ab@see Haykin, 1994
classification. The reflected images were not assumed to be indéFhe activities of the hidden and output units were calculated se-
pendent of their originals and were not counted in khéor sta-  quentially as the weighted sum of their inputs, passed through a
tistical comparisons. All 400 difference images in the data set wersigmoidal hyperbolic tangent transfer function. The network was
asymmetric. The reflected images differed from their originals intrained by back-propagation of error to outful for the appro-
6,125 of the 6,336 pixels on average, and the mean magnitude gfriate action and zeros everywhere else, using conjugate gradient
the difference was 5.36. Images differed between individuals in amlescent on the summed squared error. Stopping criterion was the
average of 6,179 pixels, and the mean magnitude of the differencaflection point in the mean test error. The output unit with the
between individuals was 7.17. The symmetry of the training sethighest activity determined the classification.
also ensured that the classifiers had no asymmetric bias.

Feature measuremenkour of the upper face actions produce

Holistic spatial analysis.We first evaluated the ability of a wrinkles in distinct locations on the face, and the remaining two
back-propagation network to classify facial actions given principalalter the amount of visible sclera. We applied a method developed
components of gray-level images as input. This approach is basday Jan LarsefBartlett et al., 1996for measuring changes in facial
on the work of Cottrell and Metcalf@991) and Turk and Pentland wrinkling and eye opening. The feature measurements were car-
(1992); the primary distinction is that we performed PCA on the ried out on 360-x 240-pixel images. Facial wrinkles were mea-
data set of difference images. The remaining variation in the dataured at the four facial positions shown in Figure 4a, which were
set of difference images was that due to the facial dynamics. Eaclocated in the image automatically from the eye position informa-
of the 800 difference images was converted to a vector by contion. These image locations were selected for detecting wrinkles
catenating the rows of pixel intensities. The principal componenfproduced by AUs 1, 2, 4, and 6. At each location, mean pixel
axes of the difference image data were then calculated by findingntensities of a five-pixel-wide segment were extracted and then

Figure 3. First 12 principal components of the dataset of difference images, ordered left to right, top to bottom. The first component
appears to code for vertical brow position. The sixth component axis appears to differentiate between AU 1, raising the inner corners
of the brow, and AU 2, raising the lateral portions of the brows. Component 7 appears to be an axis of left-right asymmetry in the lateral
brow movement, and component 5 appears to be an eye opening axis.
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Figure 4. a. Wrinkling was measured at four image locations, A-D. b. Smoothed pixel intensities along the line labeled A. c. The
wrinkle measure, RB; is the intensity of theth pixel of the segment. Pixel differences approximate the derivafiam, Kasturi, &
Schunk, 1995k d. P measured at image location A for one subject performing each of the six actions.

smoothed lengthwise by a median filter. Figure 4b shows thecan be accounted for by shifts in spatial position. The local image
smoothed pixel intensities along the image segment labeled A. Theelocities,v, = dx/dt andwv, = dy/dt, are defined in terms of the
pixel intensities drop sharply at the two major wrinkles. spatial and temporal gradients of the ima@l¢gx, dl/dy, andal /at.

We chose as a measure of facial wrinkling the sum squared Optic flow was estimated between image pairs, a given frame
derivative of the pixel intensities along the segment. This value isn an action sequencé, and the neutral framegy. Images were
estimated by RFigure 4c) This measure is sensitive to both the smoothed by a 5< 5 Gaussian kernel. Estimates of the spatial
deepening of existing wrinkles and the addition of new wrinkles.gradientsAl, andAly, were obtained with horizontal and vertical
To control for permanent wrinkles, P values for the neutral imageSobel edge filters. The temporal gradient was estimated Iby-
were subtracted. Figure 4d shows P values along line segment A(x,y,t) — 1(X,y,t9). Local estimates of image velocity in the
for a subject performing each of the six actions. P remains atlirection of the gradient were obtained by= Al;/Al, andv, =
zero except for AU 1, for which it increases as action magni-Al;/Al,.
tude increases. Only AU 1 produces wrinkles in the center of the Gradient-based techniques for estimating optic flow give reli-
forehead. able estimates only at points where the gradient is kigh, at

For detecting and discriminating AUs 5 and 7, we defined anmoving edger Velocity estimates were set to zero at locations at
eye opening measure as the area of visible sclera lateral to the irishich the total edge measure= Al2 + Al was beneath a
This area was found by starting at the pupil and searching laterallyhreshold of 0.2. An example flow field is shown in Figure 5. One
for connected rows of pixels above threshold. Again, differencef the advantages of this simple local estimate of flow was speed.
from baseline were measured. A three-layer neural network walt took 0.13 s on a 120-MHz Pentium processor to compute one
trained to classify each image from the five feature measuredjow field.
consisting of the wrinkle feature measured at four locations and the The flows fields were classified by a template matching pro-
eye opening measure. The network had 15 hidden units and éedure. A weighted template for each of the actions was calculated
output units. from the training images as the mean flow field at medium action

magnitude(Frame 4 of the sequenceNovel flow patternsf",

Optic flow. Local estimates of motion in the direction of the were compared to the templaté by the correlational similarity
image gradient were obtained by an algorithm based on the brightmeasureS;
ness constraint equatigiiorn & Schunk, 198}

2 fin' fit

)

di(x,y,t)  ax al(x,y,t) = ay al(x,y,t) al(xyt) S(fnfh) = ,
at ot ax ot ay T 7O @ \/Efi“.fi”\/zfi‘.fit

This equation assumes that there is no overall gain or loss ofvherei indexes image locatios( f", f!) is the cosine of the angle
brightness in the imagleover time, and any changes in brightness between the two flow vectors.
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Figure 5. Example flow field of a subject performing AU 1, inner brow raiser. The flow vector at each image location is plotted as
an arrow with length proportional to the local estimate of velocity.

Naive human subjectdNaive subjects were nine adult volun- pairs were presented, consisting of low-, medium-, and high-
teers with no prior knowledge of facial expression measurementmagnitude examples of the six actions from seven faces. Time to
Subjects were provided with a guide sheet similar to Figure 2complete the task ranged from 20 min to 1 hr and 15 min.
which contained an example image of each of the six actions along
with a written description of each action and a list of image cuesResults
for detecting and discriminating the actions from Ekman and Frie-Generalization to novel faces was tested using leave-one-out cross-
sen(1978. Each subject was given a training session in which thevalidation (Tukey, 1958. This procedure makes maximal use of
facial actions were described and demonstrated, and the imagbe available data for estimating parameters. System parameters
cues listed on the guide sheet were reviewed and indicated on theere estimated 20 times, each time using images from 19 subjects
example images. The subjects kept the guide sheet as a refererfoe training and reserving all of the images from one subject,
during the task. including the reflected images, for testing. The system parameters

Face images were cropped and scaled identically to how thewere deleted and reestimated for each test. Mean classification
had been for the automated systems, with 45 pixels between theerformance across all test images in the 20 cross-validation runs
eyes, and printed using a high-resolution HP Laserjet 4si printewas then calculated.
with 600 dpi. Because the automated systems had information With this procedure, there were 800 test images, containing
about the test image and the neutral image when making a clasdbw-, medium-, and high-magnitude examples of the facial actions.
fication, face images were presented to the human subjects ifihe systems classified the test images one frame at a time, without
pairs, with the neutral image and the test image presented side bgference to previous outputs. Figure 6 is a plot of the overall mean
side. Subjects were instructed to compare the test image with thgerformances of the classifiers on novel faces. Performances by
neutral image and decide which of the actions the subject haéacial action are the diagonal entries in the confusion matrices in
performed in the test image. Subjects were given a practice sessidrables 1 and 2.
with feedback consisting of one example of each action at high
magnitude. Neither the practice face nor the reference face was Holistic spatial analysisClassification performance was eval-
used for testing. The task contained 96 image pairs, consisting afated for two scales of difference images,%®6 and 22x 32,
low-, medium-, and high-magnitude examples of the six actionsand for five quantities of principal components in the network
from six different faces, three male and three female. Subjecténput: 10, 25, 50, 100, and 200. There was a trade-off between
were allowed to take as much time as they needed to perform thimcreasing the amount of information in the input and increasing
task, which ranged from 30 min to 1 hr. the number of free parameters to be estimated. The higher princi-

pal components may also include more information on between-

Expert codersExpert subjects were four certified FACS cod- subject variations. We obtained the best performance of 88.6%
ers. The task was identical to the naive subject task with the folusing the first 50 principal components of the 2232 difference
lowing exceptions. Expert subjects were not given a guide sheet dmages.
additional training, and the complete face was visible, as it would The holistic system with 50 principal components had 580
normally be during FACS scoring. One hundred fourteen imagegparameters, and our training set in a given training run contained
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100 Feature measuremenfhe performance of the feature-based
classifier on novel faces was lower than that of the other methods,
at 57% correct. Normalization of the feature measures With
scores did not improve performance. The classifier was most ac-
curate for the two actions that involved changes in eye opening,
AU 5 and AU 7, at 74% and 62% correct, respectively. The poor
performance for novel faces may be attributable to the differences
in facial wrinkling patterns between subjects depending on skin
elasticity, facial structure, and fat stores. The feature-based classi-
fier performed well for new images of a face used for training, with
classification accuracy of 85.3%.

90

80 1

70 1

60 Optic flow. Template matching of motion flow fields classified

the facial actions with 84.5% accuracy for novel subjects. The
performance of the motion-based classifier was similar to that of
the holistic classifier, giving highest accuracy for AUs 2, 4, 5, and
7 and lowest accuracy for AUs 1 and 6.

Percent Correct

50 7

40 - Hybrid system.We obtained the best performance when we

combined all three sources of information into a single neural
Figure 6. Performance comparisons for generalization to novel subjects.ne_twork'_The classifier was a fe_ed'_forwar_d network with 10 hidden
values are percent correct across all test images. Error barsSDefithe  UNits taking 50 component projections, five feature measures, and
estimate of the success rate in a Bernoulli distribution. Human results wer8iX template matches as input. The hybrid system improved the
prorated by action and action magnitude to match the proportions in thg@eneralization performance to 90.9%, over the best individual
complete image set. method at 88.6%. While the increase is small, it constitutes about
20% of the difference between the best individual classifier and
perfect performance.

] o ) ) We examined how the hybrid system benefited from the mul-
on average 760 images. Overparameterization is a risk with sucfije sources of input information by looking at correlations in the
high dimensional networks. Performance for generalization to noveheformances of the three individual classifiers. The contribution

faces provided a measure of how well the system performed thgs 5qditional inputs to the signal-to-noise ratio depends on their

general class discrimination, as opposed to finding a trivial solu¢qrrelations. Each data point in the correlation was mean percent
tion that minimized the error for the training samples without corect for 1 of the 20 faces, across all actions and action magni-

learning the class discrimination. _ _ tudes. The performances of the holistic and the flow field classi-
The performance of 88.6% is substantially higher than the 70%;qrs were correlated; 2 = 0.36, t(18) = 2.96,p < .01. The

performance reported by Padgett and CotttgéB97) for facial  featyre-based system was not correlated with either the holistic or
expression classification using full-face eigenfaces. The success @f\y field classifiers.r2 = 0.05 t(18) = 0.85,p > .4, andr2 =

the present system could be attributable to reduced variability dU@.oz,t(ls) =0.65,p > .5, respectively. Although the stand-alone
to the use of difference images or to the smaller original image,erformance of the feature-based system was low, it contributed to
size, so that 50 principal components accounted for a greater pefpe hyprid system by providing estimates that were not correlated
centage of the variability. In addition, we employed a region of ,iih the two template-based systems. Without the feature mea-
interest analysis, consisting of half of the face image, which issures, 17% of the improvement was lost.

similar to the eigenfeature approach that gave Padgett and Cottrell
better performance.

Classifier

Human subjectsA benchmark for the performance of the au-
tomated systems was provided by the performance of naive human
subjects on the same set of images with identical cropping and

Table 1. Confusion Matrix for Naive (Nv) and Expert (Ex) scaling. Hgman nqqexperts c!qssified the images with .73'7% ac
Human Subjects curacy. Thls_ls_ a difficult classification problem that requires con-
siderable training for people to be able to perform well. Performance
Responses of the naive human subjects was significantly lower than that of
the hybrid system on the subset of images used in the human study
Action AU 1 AU 2 AU 4 AU 5 AU 6 AU 7 (Z=2.04,p < .05). .
unit Nv Ex Nv Ex Nv Ex Nv Ex Nv Ex Nv Ex A second benchmark was provided by the agreement rates of

expert coders on these images. The expert human subjects classi-

AUl 84 .99 .08 .00 .03 .00 .02 .00 .02 .00 .02 .01 fied the actions with 91.8% agreement with the class labels as-
AU2 .12 .04 .83 .93 .00 .00 .03 .00 .01 .00 .00 .02 : : iR
A4 03 00 03 0188 96 01 .00 02 00 03 00 signed during database collection, which is well above the FACS

AUS 09 00 20 01 .00 0164 98 03 .00 .03 o1 Intercoderagreement standard for proficiency. The majority of the
AU6 04 00 .03 01 .04 .00 .00 .0055 .41 34 58 disagreement was on the low-magnitude examples of the actions,
AU7 00 .00 .04 .00 .05 .02 .00 .00 .26 .09%5 .89 and the absence of video motion could account for much of the
disagreement. Because the images were originally labeled by two
Note: Values are the percent occurrence of each response for a given €Xpert coders with access to stop-motion video, these data provide
action. a measure of intercoder agreement between coding stop-motion
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Table 2. Confusion Matrix for the Automated Classifiers

Responses

AU 1 AU 2 AU 4 AU 5 AU 6 AU 7
Action

unit Hol Mt Ft Hyb Hol Mt Ft Hyb Hol Mt Ft Hyb Hol Mt Ft Hyb Hol Mt Ft Hyb Hol Mt Ft Hyb

AU 1 58 .20 50 57 .19 31 .04 .17 .00 .00 .29 .01 .10 .33 .14 .08 .03 .00 .00 .00 .10 .15 .02 .18
AU 2 12 .02 .10 .10 .83 94 36 .85 .01 .00 .04 .00 .01 .02 41 .00 .00 .00 .00 .00 .03 .02 .09 .05
AU 4 .00 .00 .08 .00 .00 .01 .01 .00 .96 .97 54 99 .00 .00 .26 .00 .06 .00 .00 .00 .04 .02 .10 .01
AU 5 .01 .00 .07 .00 15 00 3 .00 .00 .00 .10 .0098 10 .74 10 .00 .00 .00 .00 .00 .00 .06 .00
AU 6 .00 .00 .00 .00 .00 .00 .02 .00 .00 .16 .00 .02 .06 .04 .20 .06 .40 .38 .74 .38 .40 .40 .22

AU 7 .00 .00 .06 .00 .00 .00 03 .00 .01 .00 .06 .01 .00 .02 .21 .01 .00 .03 .03 .@® .94 .62 .98

Note: Values are the percent occurrence of each response for a given actios. igistic; Mt = motion; Ft= feature; Hyb= hybrid.

video and static images. The performance of the holistic and hyfeature-based system were least correlated with those of the human
brid computer systems did not differ significantly from that of the subjects, with a low but significant correlation with those of the
human expert$Z = 1.63,1.86, but the expert coders did outper- expert coders and no significant correlation with the naive subjects.
form the optic flow and feature-based classifi€fs= 3.17,p <
.01;Z=17.2,p < .00D. Discussion

Error analysis. The action confusions made by both naive and Facial action codes provide a rich description of facial behavior
expert human subjects are presented in Table 1. Naive subjectbat enables investigation of the relationship of facial behavior and
made the most confusions between AUs 6 and 7, which both altenternal state. We developed methods for automatically classifying
the appearance underneath the eye, followed by AUs 2 and Sacial actions from image sequences. The approach presented here
which both give an eye widening appearance by raising the outediffered from that of other computer facial expression analysis
brows and the upper lid, respectively, followed by AUs 1 and 2,systems in that we focused on classifying the basic elements that
which raise the inner and outer portions of the eyebrows, respesomprise complex facial movements rather than on classifying
tively. The majority of the disagreements for the experts wereemotion categories. Classification was learned directly from images
between AUs 6 and 7. of facial actions without mediation of a physical model.

Table 2 shows the action confusions made by the three image We compared the performance of three diverse approaches to
analysis systems and the hybrid system. Correlations among thgrocessing face images for classifying facial actions: holistic spa-
action confusions are given in Table 3. Consistent with the pertial analysis, feature measurement, and analysis of motion flow
formance rate comparisons, the confusions made by the holistifields. Best performance of 92% correct for classifying six actions
system were highly correlated with those of the motion-based syswas achieved by combining the three methods of image analysis
tem, whereas the confusions made by the feature-based systénio a single system. The hybrid system classified an image in less
were less closely correlated with those of the holistic system anghan 1 s on @20-MHz Pentium processor. Our initial results are
not correlated with those of the motion-based system. promising because some of the upper facial actions included in this

Of the four automated systems, the holistic system had thetudy require extensive training for humans to discriminate reli-
pattern of confusions most similar to those of both the naive hu-ably. The holistic and hybrid automated systems outperformed
man subjects and the expert coders. This finding is consistent withuman nonexperts on this task, and the hybrid system performed as
previous reports that principal component representations of faceell as highly trained experts.
images account well for human perception of distinctiveness and The image analysis methods did not depend on the precise
recognizability of facesHancock, Burton, & Bruce, 1996; O'Toole, number of video frames nor did the actions need to be of any
Deffenbacher, Valentin, & Abdi, 1994 The confusions of the particular magnitude beyond the neutral frame. For applications in

which neutral images are unavailable, PCA could be performed on
the original gray-level images. Methods based on PCA have suc-
cessfully classified static gray-level images of facial expressions

Table 3. Action Confusion Correlations (Padgett & Cottrell, 19917 The image analysis also required lo-
calization of the face in the image. For this study, the localization
Expert Holistic Motion Feature Hybrid was carried out by making two mouse clicks, one at the center of
] each eye, in the first frame of the sequence. All other aspects of the
Ei"’:ﬂ 58T -36%’:** -2861* -22** ﬁé’l systems were fully automated. Highly accurate eye location algo-
Horl)istic ' Qe 17+ g0k rithms are availablée.g., Beymer, 1994 and automating this step
Motion 09 BOr* is a realistic option. The image alignment procedure ignored out-
Feature .07 of-plane rotations, which could be handled by methods for esti-

mating the frontal view of a face from a nonfrontal vide.g.,

Note: Entries are squared correlation coefficients. Significance is based Beymer et al,, 19932 Vette!’ & POgg',O’ 1997 .
on at-test withdf = 28. There are 46 action units, of which we have presented classi-

*p < .05. **p < .01. **p < .001. fication results for 6. The holistic and motion-based systems are
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not specific to particular actions and can be applied to any othewere measured. Padgett and Cott(@B97) found that local PCA
facial motion. The image analysis in these systems was limited tavas superior to full-face eigenfaces for expression recognition.
the upper half of the face because upper facial actions have littl&hese local features were based on data-driven kernels obtained
effect on motion in the lower face, and vice verdgkman &  from the gray levels of the face images, as opposed to the hand-
Friesen, 1978 We are presently applying these techniques to im-crafted feature measures that performed poorly in this study and
ages of the lower half of the face to classify the lower facial others(e.g., Brunelli & Poggio, 1993 We are presently explor-
actions. ing local representations of faces based on the outputs of local
It remains an empirical question to determine whether this apfilters such as Gabor wavelets and local PCA for facial action
proach will have the same success when dealing with spontaneoutassification.
rather than deliberately made facial actions. Although the mor- A completely automated method for scoring facial actions in
phology of the facial actions should not differ in spontaneous asmages would make facial expression measurement more widely
compared with deliberate facial actions, the timing of the activityaccessible as a research tool in behavioral science, medicine, and
and the complexity of facial actions may well be different. Eval- psychophysiology. Facial action codes have already proven a use-
uating spontaneous facial movement is an important next step. ful behavioral measure in studies of emoti@ng., Ekman, 1984
Cohn et al.(in pres$ developed a related system for automatic human interaction and communicati@g., Ekman & Oster, 1979
facial action coding that takes advantage of the precision obtaineognition(e.g., Zajonc, 1984 and child developmerie.g., Cam-
able through human—computer interaction. In their system, moreas, 1977. Measurement of observable facial behavior has been
than 40 feature points are manually identified in the initial image.combined with simultaneous scalp EEG in the study of physiolog-
The system presented here is more automatable because humaal patterns associated with emotional stdgeg., Davidson, Ek-
interaction in our system was limited to the two mouse clicks in theman, Saron, Senulis, & Friesen, 1998nd with measures of
initial image. Another difference between the two systems is thautonomic nervous system activity to study the relationship of
the Cohn et al. system estimates displacements in a select set efmotion to facial muscles and the autonomic nervous system
feature points, whereas our system captures full-field informationf Ekman, Levenson, & Friesen, 1983
on skin motion. Neuropsychological investigations in humans and physiologi-
Most automatic facial expression analysis systems have foeal recordings in primates have indicated a separate neural sub-
cused on either motion or surface gray levels but not on bothstrate for recognizing facial expression independent of identity
Although human subjects can recognize facial expressions froniTranel, Damasio, & Damasio, 1988; Adolphs, Tranel, Damasio, &
motion signals alonéBassili, 1979, recognition rates are only just Damasio, 1995; Hasselmo, Rolls, & Baylis, 198and there is
above chance. Likewise, although humans can recognize facia@vidence that the recognition of specific facial expressions de-
expressions quite well from static gray-level images, expressiompends on distinct systenis.g., Adolphs, Damasio, Tranel, & Dam-

recognition improves with high temporal resolution videall- asio, 1996. Neural substrates for the perception of two negative
bott, 1992. This system integrates analysis of both surface grayemotions, fear and disgust, have recently been differentiated using
levels and motion information. functional magnetic resonance imagiGBhillips et al., 1997.

The two template-based methods, holistic spatial analysis anéhereas perception of expressions of fear and anger produced
motion analysis, outperformed the feature-based method for faciactivation in the amygdal&Brieter et al., 1996; Morris et al.,
action recognition. This finding supports previous findings that1996, perception of disgust in others activated interior insular
template approaches outperformed feature-based systems for remrtex, an area involved in responses to offensive téKiesmura
ognizing facegBrunelli & Poggio, 1993; Lanitis et al., 199.7This et al., 1994; Yaxley, Rolls, & Seinkiewitz, 1988
result is also supported by the work of Liet®98, who found that Automated facial action coding could provide an objective mea-
facial furrow measurement based on analysis of high image grasure of visual stimuli in such investigations of the neural substrates
dients was not as accurate as full field motion analysis for faciaffor the perception of facial expressions and could provide a be-
action classification. havioral measure of emotional state. An automated system would

Our results also suggest that hand-crafted features plus tenimprove the reliability, precision, and temporal resolution of facial
plates may be superior to either one alone, because their perfomeasurement and would facilitate the use of facial measurement in
mances may not be correlated. Classification of local featurgpsychophysiological investigations into the neural systems medi-
measurements is heavily dependent on exactly which featuresting emotion.
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